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Abstract

A Fourier space formalism based on the shape amplitude of a particle is used to compute the demagnetization tensor
field for uniformly magnetized particles of arbitrary shape. We provide a list of explicit shape amplitudes for important
particle shapes, among others: the sphere, the cylindrical tube, an arbitrary polyhedral shape, a truncated paraboloid,
and a cone truncated by a spherical cap. In Part I of this two-part paper, an analytical representation of the
demagnetization tensor field for particles with cylindrical symmetry is provided, as well as expressions for the
magnetostatic energy and the volumetric demagnetization factors.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The computation of demagnetization factors (either volumetric, ballistic, or point function) is an old and
difficult problem, with the earliest work going back to the 19th century. All demagnetization factors can be
derived from the demagnetization point function or demagnetization tensor field (DTF), so that this tensor
field, represented by the symmetric second-rank tensor Nj(r), is the central quantity to be determined. The
DTF describes how the magnetic field, H(r), depends on location for a uniformly magnetized particle with a
given shape. It is well known that for the ellipsoid, the DTF is constant inside the body, so that this shape is
particularly useful for experimental measurements in a uniform applied field. For other shapes, the DTF
depends on position inside the body, so that the interpretation of experiments becomes much more
complicated [1].
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Recently, we proposed [2] a new method for the computation (analytical or numerical) of the DTF for a
uniformly magnetized particle with an arbitrary shape. The mathematical details of this model are
summarized in Section 2. The method expresses all magnetostatic quantities in Fourier space, and employs
the concept of the shape amplitude, D(k), which is the Fourier transform of the characteristic (or shape)
function, D(r). The shape function is constant and equal to 1 inside the particle, and vanishes everywhere
outside the particle. In Ref. [2], the model was applied to the derivation of the DTF for a uniformly
magnetized sphere, a well-known result, and also to the DTF of a uniformly magnetized tetrahedron. In the
present two-part paper, we present additional applications of the Fourier space formalism for the
computation of the DTF. In this paper, Part I, we focus our attention on analytical computations, whereas
the companion paper, Part II [3], deals with several numerical methods.

The central function in the Fourier space description of the DTF is the shape amplitude D(k). Because of
its importance, we provide a number of explicit expressions for the shape amplitude in Section 3. The list
includes: the sphere, the cylindrical tube, an arbitrary polyhedral shape (with a rectangular prism, the
tetrahedron, and a hexagonal plate as examples), the truncated paraboloid, and a cone with a spherical cap.
This list should serve as a guideline for the computation of the shape amplitude for other, more complex
particle shapes. In Section 4, we describe first the general theory for the DTF of an object with cylindrical
symmetry (4.1), followed by the explicit analytical computation of the DTF for the cylinder (4.2). In Section
5, we compute the magnetostatic energy of the uniformly magnetized cylinder with arbitrary aspect ratio,
followed in Section 6 by the computation of the magnetometric (volume-averaged) demagnetization factors
for the cylinder. We conclude this paper with a number of applications of the model (Section 7) for the
computation of the field at particular locations in space around a solenoid.

2. Summary of the theoretical model

In this section, we will repeat briefly the most important conclusions of Ref. [2]. Consider a uniformly
magnetized particle with characteristic function (or shape function) D(r) and magnetization M(r) =
MymD(r), where the hat indicates a unit vector and M, is the saturation magnetization. Using a Fourier
space formalism, it can be shown that the magnetic induction, B, inside and around the particle is given by

B D(k .
B:HO(M+H):H0M—8—7:3/d3k ( ) k(i - k)e'*T, 1)

where the shape amplitude D(k) is equal to the Fourier transform of D(r), and By = uyMy,. The
demagnetization field H is therefore defined as

Dk .
o [ Rk e &)
If we define the demagnetization tensor N;; by the following relation:
B;i = po(M; — Ny M), 3)
then we find an explicit expression for the tensor by comparison with Eq. (1):
D(k
l](r) /d3 k(z )kk lkr (4)
or, in Fourier space:
D(k)
Nij(k) = —5kik;. (5)
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This definition of the demagnetization tensor automatically satisfies the condition that the trace of N; must
be equal to unity inside the particle, and vanish outside. In other words, the trace of the demagnetization
tensor field is equal to the shape function, or

Tr[N;;(r)] = D(r), (6)
as shown explicitly in Eq.(7) of Ref. [2]. Furthermore, the shape amplitude can be used to

derive expressions for the demagnetization energy, E,, and the average demagnetization tensor
inside the particle:

Mg [ 5 DM
E, = 16n_g/dk (k) (7)
1 3, |D(K)|?
<N>i/:8n3V/dk ik (8)

The shape amplitude of a particle without inversion symmetry is a complex quantity, hence the modulus-
squared in both of the above integrals.

In Ref. [2], we have applied Egs. (4), (7), and (8) to the simple case of the uniformly magnetized
sphere, for which these results are well known. In the present paper, we will exploit these same
expressions for the analytical computation of Ny(r), E,, and (N ) for the finite cylinder. We will also
show how a large class of particle shapes with cylindrical symmetry can be dealt with. While the standard
analytical computation of N; requires two volume integrations (6 integrals) within the Fourier space
formalism (essentially two 3D Fourier transforms), it is possible to formally integrate four of those integrals
for a general object with cylindrical symmetry. This will be done in Section 4.1. Then we apply the general
equation to the special case of the finite cylinder and explicitly obtain expressions for all three quantities
mentioned above. We begin this paper with a list of shape amplitude functions for important particle
shapes.

3. Shape amplitudes for important particle shapes

Since the shape amplitude D(k) is the central function for the determination of demagnetization factors
and magnetostatic energies, it is useful to list here explicit shape amplitudes for a number of important
shapes. Unless mentioned otherwise, the coordinate origin is at the center of the particle. Cartesian
coordinates are labeled (k,, k,, k.), cylindrical coordinates (k ,0, k.), and spherical coordinates (k, 0, ¢).

® Sphere: For a sphere of radius R and volume V:“T"R3 (Fig. la), the shape amplitude is given
by [4]:

3
D) =221 (kR), ©)

with jj(x) the spherical Bessel function of the first kind.
® Cylindrical tube: For a tube with inner radius R;, outer radius R,, height 2d, and volume V =
2dn(R5 — R?) (Fig. 1b), the shape amplitude is

2Vsinc(dk;)

PO m—r

[RoJ1(k1 Ry) — RiJi(k L Ry, (10)

with Jj(x) the Bessel function of the first kind, and sinc(x) = sin(x)/x. A more general expression for
particle shapes of arbitrary cylindrical symmetry is given in Section 4.1.
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Fig. 1. Schematic representation of the various particle shapes used in Section 3 to derive analytical expressions for the shape

amplitude D(K).

General polyhedral shape: The general expression of the shape amplitude for an arbitrary polyhedral
particle was derived by Komrska [5].

D(k) = IXF:k—anLfek nysinc Lre . t. ) e ™. (11)
Kk (kmy) 2

This equation is only valid if the second denominator is non-zero. If k = +kn, (in other words, if k is
parallel to any one of the face normals), then the contribution of that particular face (or faces) must be
replaced by

k-n .
Dy(k) =i sz Pre ik (12)

where Py is the surface area of the face f, and dr the distance between the origin and the face /. In the
origin of Fourier space, the shape amplitude is equal to the particle volume, i.e. D(0) = V. The symbols
in Eq. (11) are illustrated in Fig. 1f and defined as: 6 coordinate vectors of the center of the edge e of
face f; ns, unit outward normal to face f; Ly, length of the eth edge of the fth face; t;, unit vector along
the eth edge of the f'th face, defined by

ny x Ny
Iny x Ng|”

t, =

where Ny, is the unit outward normal on the face which has the edge e in common with the face /7 ny,
unit outward normal in the face / on the edge e defined by n; =tz x ny.
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The input parameters needed to complete this computation for an arbitrary polyhedron are the N,
vertex coordinates &, and a list of which vertices make up each face (counterclockwise when looking
towards the polyhedron center). All other quantities can be computed from these parameters. The
following three shape amplitudes are derived by means of the general shape amplitude for a polyhedral
particle.

Rectangular prism: for a rectangular prism with dimensions 2a, 2b, 2¢, and volume V' = 8abc (Fig. 1c),
we have (oriented with edges parallel to cartesian coordinate axes)

D(k) = Vsinc(ak,)sinc(bk,)sinc(ck:). (13)

Regular tetrahedron: for a regular tetrahedron with edge length L and volume V' (Fig. 1d), the shape
amplitude is given by [6]:

D(k) = —61V|[E(a,a,a) + E(a, —a,—a) + E(—a,a,—a) + E(—a, —a,a)], (14)
with @ = L/+/2, and
efi/Z(ock\»Jrﬁky#,'k:)
(kx4 Bhey Yok 4 k) (B, + k)

The lack of an inversion center causes the shape amplitude to be a complex quantity.

Regular hexagonal plate: The shape amplitude of a regular hexagonal plate can be computed analytically,
starting from Eq. (6) in Ref. [7], or, alternatively, by application of a six-fold rotation operation to the
shape amplitude of a 60" isosceless triangular plate, as described in Ref. [7]. The resulting expression for
a plate with thickness 2¢ and edge length 2a (Fig. le) is given by:

2 sinc(ck;)
3 ki4k}

E(o, B,y) =

(15)

D(k) = [kf,sinc(akx)sianaéky)

2 2
1 » 1
+y (pjékx + Eky) sinc[a(—%’kx + 5ky>]sinc[2a5(pj5kx + 3k (16)
=T

where y = ¢/a, 6 = \/3/2, and p; = {+1,—1}. The volume is equal to ¥ = 24da’c. When k2 + k; =0,
the shape amplitude is given by

D(0,0, k.) = Vsinc(ck.). (17)

This last expression is valid for all plate-like shapes with major surfaces normal to the z-direction.
Truncated paraboloid. Consider a paraboloid oriented along the z-axis of a cartesian reference frame.
The top of the paraboloid is in the origin, and the height is equal to # = aR?, with R the radius of the
circle in the truncation plane (Fig. 1g). The shape amplitude (in cylindrical coordinates) consists of two
terms:

2miR 2mi
D) = —- e " Ji(k L R) — 2

z z

R
/ Jotk L ppe 7" dp. (18)
0

The radial integral can be solved by means of the following standard integral [8]:
1
[ do e ) = 1L ) + M) (19)
0

where L(u,v) and M (u,v) can be expressed in terms of the Lommel functions of two variables:

2

Y Vo, v)sin % — Vi@, v)cos Y (> v); (20)

u .
EL(u, v) = sin e 5 5
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= Ui(u, U)cos2 + Us(u, U)sm— (u<v); 21
u v’ u . u
—M (u,v) = cos— + Vo(u,v)cos = — Vi(u,v)sin = (u>v); (22)
2 2u 2 2
.u u
= Ui(u, v)sin 37 U, (u, v)cos 5 (u<v), (23)
with
X k u 2k+v
U 0) = Y D (5) o) (24)
k=0
X v 2k+v
Viuo) = 3 (~1DF (;) Treanl0). (25)
k=0

Introducing dimensionless variables K, = hk, and K, = Rk, we find for the shape amplitude of the
truncated paraboloid:

A kMK Lok ko —ivekL k)|, 26)
K. K| 2

D(KlaKZ) =

where V = n/2hR?> is the volume of the truncated paraboloid. The limiting cases for K,—0
and K, —»0 can be computed easily by using only the lowest order terms of Egs. (24) and (25).
We find:

bk, 0= {JI(KL) _ iJz(Kl)] @7)
_ 2Vi —iK. iK.

DO.K) = {e 5 K_(l +e )} (28)

D(0,0) = V. (29)

Cone truncated by spherical cap: The shape amplitude for a cone with opening angle o, truncated by a
spherical cap of radius R (Fig. 1h) is given by (in spherical coordinates):

D(Kk) =2n i(—i)l[P;_l(cos o) — P i(cos a)]Pi(cos O)k(k, R), (30)
=0

with Pj(x) the a Legendre polynomial, and
R
w R = [ dp i)

This radial integral can be rewritten as

k
Kk, R) = \/E /Rdxx2J 1(x).

Using the relations

. . 214+ 1.
Ji1(X) +jip1(x) = < Ji(x)
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and
/ dx x*J,(x) = X' T (x) — (A —v —1) / dx x* 1 J,1(x)

we can derive the following recursion relation:

1+3 20+3 [m/R\?

kra(k, R) = e, R) = T\@ <E> T, 3kR) (31)
This recursion relation can be started if the integrals x,(k, R) with ¢ = 0, ..., 2 are known. They can be
derived from equations [1.8.1.6] and [1.8.1.8] in Ref. [9]:

1

Ko(k, R) = F[sin(kR) — kRcos(kR)]; (32)

Kki1(k,R) = %[2 — 2cos(kR) — kRsin(kR)]; (33)

Kok R) = [chos(kR) _ 4sin(kR) + 3 (si(kR) n E)] (34)

’ k3 2 5

with si(x) = [;(sin#/)d¢ the sine integral.

This concludes the enumeration of shape amplitudes for a series of important particle shapes. In the
following section, we will first derive a general expression for shapes of cylindrical symmetry, and then
apply the formalism to the uniformly magnetized cylinder.

4. The demagnetization tensor field for objects with cylindrical symmetry

4.1. General theory

Consider a general object with cylindrical symmetry, as shown in Fig. 2. The top and bottom surfaces are
assumed to be flat at z = #; and hy. The object has an external surface described by r = ry(z), and an

z

Fig. 2. Schematic representation of a general object of revolution with distinct inner and outer surfaces r,(z) and r,(z).
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internal surface at r = r|(z). It is possible for r;(4;) to be equal to ry(h;) for one or both points. Both
functions r;(z) are assumed to be single valued functions. The demagnetization tensor for such an object can
be expressed by first determining the shape amplitude D(k), which, in cylindrical coordinates with k =
(k1,0,k.)and r = (r,0,z2), is given by:

ha (2) 2n
D(kk) = / dz e 7k / drr / do e’ik”“’sw’o/);
0

I r1(2)

e
=27 dze 7k / drrJo(k L r);

h 1(2)
2n (" —izk.
kL/h] dz f(k,,z)e ™, (35)
with
Slkyi,z) = @)k r(2) — ri(2)Jitk Lri(2)). (36)

The demagnetization tensor for this class of objects can be obtained by inserting the integral (35) into
Eq. (4), expressed in cylindrical coordinates. The resulting four-fold integral is given by

’or 1 o * n ik | rcos(0—0") A kik,ieii(z e
NU(V,H,Z):H f dz A dklf(kJ_,Z) A dfe . dkzw (37)

Inserting the Cartesian components of k = (k cos®, k, sin@, k.), and using the following standard
integrals:

/ ’ e Yeos(nx)dx = "nJ,(f)  [3.915.2]; (38)

0

/ " eheos 3gin'(x)dx = /7 @) vr(v + %)Jv(ﬁ) [3.915.5]; (39)
0

/ ’ e ¥dx = nly(z)  [3.339%]; (40)
0

where the numbers between square brackets refer to Ref. [10], the 6 independent components of the tensor
Njj can be written as:

K3 [Jo(k L) — cos 20' (kL 1)]

N , 1
N22 ki [Jo(kl l‘) + cos 20 Jz(kj_ V)] 1
2Jo(k 1) +oo 2 | ik
N33 L 1 //12 /oc / k2 e i(z—2")k-
r0,z2)=— dz dk f(k,,z 1 dk.| 7~ |————.
N ( ) 4n Jp, 0 ACRE —Eki sin 20'J(k , r) —w 1 ki + k2
Ni3 2ik | cos 07, (k L r) k:
N 2ik L sin 07, (k L r) kz

(41)

The integral over k. can be solved using the standard integrals [3.723.2], [3.723.3], and [3.738.2] in Ref. [10]
and the demagnetization tensor is written as

o0 /lz
Ny(r,0/,2) = / dey ey Syky,r,0) | dzf(ky,2)E ek, (42)
0

hy
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where
2
Sl .10y =" ol Tk L), 43)
1=0
and the matrices ocf-]’-‘) and 5§ji> are defined as
1 00 0 0 cost
ocg))E% 01 0]/, agj”z% 0 0 sin0
0 0 2 cos0 sin@ 0
—2co0s20"  sin20 0 1 -1 +1
o) = é sin200  2cos200 0|, &P = -1 1 41
0 0 0 +1 +1 -1

The top sign in Eq. (42) is used when z — z/ > 0, the bottom sign when z — 2’ <0.

The main advantage of expression (42) is that there remain only 2 integrations compared to the 6
integrations needed to go from D(r) to Nj(r). In some cases, one of the two integrals can be carried out
analytically, leaving only one integral to be evaluated numerically. In the case of the cylinder, both integrals
can be computed analytically, as shown explicitly in Section 4.2.

4.2. The demagnetization tensor field for the finite cylinder
The radial functions r;(z) for the cylinder result in the following expression for the function f(k, , z):

flki,z) = RJi(kLR), (44)

which does not depend on the coordinate z. If we scale all coordinates by the cylinder radius R (p = r/R,
(=7/R, t1=d/R, and K = kR), then the z-integral can be solved trivially (distinguishing between the
regions zZ’ < — d, —d <z <d, and d <Z'). The resulting expression for the demagnetization tensor is given by

2e~Ksinh(tK)E; [t<{]
Nij(p,0,0) = / "k Sy(K, p, 0)J1(K){ (1 — e 0Ky 4 &0(1 — 0Ky [—r<{<1] (45)
’ 2¢Ksinh(1K) & (< —1]
Next we replace the hyperbolic function by exponential functions, and introduce the following notation:
a =101, (46)
ay =0+, 7)

and

1 ift>( 1 ift<(
Hrgz . and Sip = .
0 ifr<( -1 ift>¢

After some elementary manipulations we arrive at
Ni(p, 0,0 = o [seTa(p, o) + Ia(p, 001) — 2Hor 1o (p, 0)]
— ol [scelo(p, o) + Dolp,4) = 2Hrg(1 = 6383)1o(p, 0)]
— oV soc(Ti(p, o) — Li(p, o), 48)
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where 0;; is the identity matrix and
o0
e = [ KKK, (49)
0

The integrals /,(p,«) in Eq. (49) belong to the large class of Lipschitz-Hankel integrals involving the
products of Bessel functions. There is a long history in the mathematical literature regarding this type of
integral (e.g., [11,12]). We will follow Eason et al. [12] and express the integrals in terms of complete and
incomplete elliptic integrals. To avoid confusion between the various notational schemes in use for elliptic
integrals, we will use the definitions and notations as defined in the Handbook of Mathematical Functions by
Abramowitz and Stegun [13, Chapter 17].

The solutions to the integrals of type (49) for a4 #0 are given by [9,12]

1 kio
SplEAO(ﬁi\Ki) _ %K(mi) + H, forp = 0,
2mp2
1
nki\/ﬁ{(z_mi)K(mi)_E(mi)} for,u: 1,
1 , )
2o arke (@l +p*+2)
T = K(my)+
TP 2np2
1 H,
Sty pholBalies) + =5 forp = 2,
where
ﬂi = Sil'171 O(—i and
(p— 1)2 + oczlL
my = ki = Sin2K+ = ap 1)

T T+

K(m) and E(m) are the complete elliptic integrals of the first and second kinds, respectively, and Ay(f\k) is
Heuman’s Lambda function, which is defined as

Ao(B\k) :%(K(m)E(ﬁ\90° — 1) = [K(m) — Em)F(F90" - K)), (52)

where m = sin” k. E(f\z) and F(f\o) are the (incomplete) elliptic integrals of the first and second kinds,
respectively. The solutions to the integrals of type (49) for a4 = 0 are given by [10]

1

Io(p,0) = (1 — 6,1)Hyp + 55;)1, (53)
H 1

B(p0) = (1= 0p1) 5+ 201 (54)

The solutions above are in agreement with those reported by Kraus [1] and Chen et al. [14].
We will now consider the eigenvalues and eigenvectors of the demagnetization tensor field. It is
instructive to convert the cartesian tensor elements to their cylindrical equivalents, using the following
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relations:

Nrr(pa C) = Nxx(pa 0, g)a
Nz:(ps é,) = Nz:(ps 0, C)a

er(p, é/) :vaz(p> O’ C) (55)
The component Nyy(p, {) follows from the trace condition on the tensor
Nir(p, ©) + Noo(p, ) + N=z(p, {) = D(p, 0), (56)

where D is the cylinder shape function. The cylindrical symmetry means that there must be at least a com
symmetry, i.c., a rotation axis of infinite order along z, with an infinite number of mirror planes containing
the z axis. This in turn means that two of the eigenvectors in any given point r must lie in the plane
containing the z-axis and going through this point. Using the position dependent cylindrical basis vectors
e,, €y, and e, the eigenvectors are then expressed as:

El = (COS 1, 0, Sin 17)7

E, =(0,1,0),

E; =(—sinn,0,cosn),
where 7 is an angle to be determined (depends on r and z). If we represent the eigenvalues by 4;, then we can
use the spectral decomposition to write down the explicit expression for the Nj-tensor in cylindrical
coordinates in the plane 0 = 0
cosy 0 —siny A0 0 cosy 0 sinp

0 1 0 0 4 0 0 1 0 ,

sinp 0 cospy 0 0 A —sinnyp 0 cosypy

Njj

Jicos? y+ Jzsinn 0 cosysinn(l — 23)
0 A 0
cosysing(iy — A3) 0 Ascos?ny + Asin’y

Since the trace of this matrix must be equal to the shape function, we have A, = D(r) — 4; — Z3; there are
hence three unknowns: #(r, z), 1(r, z), and A3(r, z).

It is easy to show that the eigenvalues 4; and the angle # can be expressed in terms of the cylindrical
tensor elements, as follows:

1 N,.
== Nrr N"z . = P
& 2( Nz + sin 2

N,
sin 2i’

= ltan’l 2N
1 _2 Nrr*N:z ’

If the shape function has an additional mirror plane normal to the z-axis (e.g. cylinder, torus, etc.), then the
N, element of the tensor must be an odd function of z. The above equations are valid for any object with
cylindrical symmetry.

The tensor elements are shown as grayscale plots in Fig. 3 for a cylinder with unit aspect ratio: (a)
through (c) correspond to N,,, N, and N_., resp.; (d) through (f) represent the eigenvalues 1~ = min(41, 13),
2% = max(41,43), and ;. The largest variations of the eigenvalues occur near the edges and corners, where
the shape function is discontinuous. The eigenvalues and eigenvectors can be used to create a graphical
representation of the demagnetization tensor field N;i(r) [2]. The tensor is represented by a quadratic surface

A 1
A3 = E(Nrr +N..) —
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[0.006, 0.384]

Fig. 3. Tensor elements for a cylinder with unit aspect ratio: N,, (a), N,. (b), and N.. (c). The corresponding eigenvalues 2~, 2", and /,
are shown in (d) through (f), resp. The numbers near the top of each pattern correspond to the intensity scale: black is equal to the first
number, white equals the second number.

Fig. 4. (a) Three-dimensional perspective representation of the demagnetization tensor field in the plane 6 = 0 for a cylinder (outlined)
with aspect ratio T = 1. The ellipsoids represent the demagnetization tensor in the interior of the cylinder. Intersections of three rods
correspond to the eigenvectors of the demagnetization tensor outside the cylinder, with the light/dark colored rod being associated with
the negative eigenvalue. When the tensor field is contracted with respect to a magnetization vector, the magnetic field H results. This
can be combined with the magnetization vector to result in a field line plot of the magnetic induction B(r), as shown in (b) for M
parallel to the cylinder axis, and in (c) for M at 15° from the cylinder axis.

with the eigenvectors along the main axes. For all points inside the cylinder, the eigenvalues are all positive,
so that the resulting shape is an ellipsoid. For all points outside the cylinder, the trace of the tensor vanishes
which means that one or two ecigenvalues must be negative. This leads to single-sheet or double-sheet
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hyperboloids, respectively. Fig. 4(a) shows a rendered drawing of the ellipsoids and single-sheet
hyperboloids for a cylinder with unit aspect ratio; only points in the plane § = 0 are shown since all
other planes are identical due to the cylindrical symmetry. The hyperboloids are represented by the
intersection of three rods with the eigenvectors as directions and the eigenvalues as lengths. The negative
eigenvalue is associated with the darker rod. From the ellipsoid representation one can derive the magnetic
field H(r), and hence the magnetic induction, B(r), as described in Ref. [2]. As an example, the magnetic
induction field lines for two different magnetization directions are shown in Fig. 4(b) and (¢): in (b), the
magnetization is parallel to the cylinder axis, whereas in (c), the magnetization is tilted 15° away from the
cylinder axis.

5. The demagnetization energy for a finite cylinder

For a cylindrical disk with radius R and thickness ¢ = 2d, the shape amplitude is [4]
4nR
kik.

with k; =, :k% + k2 in the plane of the disk and the coordinate origin is taken at the center of the disk.
Therefore, the demagnetization energy is given by the following integral:

Ji(k | R)sin(dk.), (57)

2 p2 2
g, = toMiR / kPR G2y ) (58)

n GRS R
For a generic unit magnetization vector (m.,m,,m.), the scalar product k - m is written as
(k - v)? = (myky +myk, +m.k.)

= (o 4 m.k.)* = o® + 2am.k. + m*k?, (59)
where o = m.k, 4+ m,k, is introduced for convenience. The integral is then
s M3 R? /w Ji(k L R)’ /2" /*" I sin’(dk.) ;
E,=—"— dk | ————= do dk. ( ko). 60
A . ; e R (o + m:k:) (60)

We first perform the integral along k.. Considering that the integral containing the 2am.k. term of Eq. (18)
is odd and hence vanishes, we have

oo 1 sin“(dk. m?
/ dkzk2 e k(2 )( P+ mlkl) = 2k: (kﬂ— 1+e ) + (1 —e ke, 61)
— o0 1 z

We may note that the only angular dependence is in «, therefore the integration on 6 gives

2n 2n
| d0o? =K% /0 dO(micos® 0 + misin2 0 + mym,sin 20)

=7k’ (m, + m}) = 7k’ (1 — m?), (62)
and hence Eq. (61) becomes
(1 — m?) ko 2mm? kot
T( —14+e ™)+ T —=(1 — e "), (63)
or, rearranging the terms
2
(kpt—1+e ety —mlhyt—3+3e ). (64)

2kL[



22 S. Tandon et al. | Journal of Magnetism and Magnetic Materials 271 (2004) 9-26

We are then left with the following integral:

2 p2 o0 2
E, — M / dkljl(l]%m[(kiz el - mikit— 3+ 3e k), (65)
0 1

which gives finally

o #oMng

, 5 5 11, 4R
Eyy == |8RGmZ — 1) + 6mtm? — 3n1(3m? — 1), ;2 ——— (66)

22 2
where the ,Fi(a,b;c;z) function is a hypergeometric function. In terms of the 7 =¢/2R ratio, and
introducing a different hypergeometric function from the following equality:

11 1 1 13 1
2| 5525 | ==V I+ HF 2 (67)
2’2 72 T

IR

we arrive at

M2R? 13 1
E, = ”OTO [4(3m§ — 1) + 6ntm? — 3n\/ 1 + 2(3m? — 1),F (—5, > 2;1+—2)] (68)
T

We can normalize the entire energy expression by introducing the particle volume ¥ and defining:

S R WER et | R4 S S L U PO (69)
" ugMgV 20 T 3n 4 o 2271 + 12

0172 —

f<>)
D
=)
=
=
=
=
= 35.26;

E T m '

<> 4

Q {V/-

£ S F i

b J

\ . / /]

I R MU R BT R
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aspect ratio T

Fig. 5. Reduced energy E,, as a function of the aspect ratio t and the azimuthal angle 6 for the uniformly magnetized cylinder. The
saddle surface is centered at the location (0.9065,35.26°), where E, = %
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This function becomes a constant (E/, = 1/6, independent of 7) for m? = 1/3, which corresponds to an
angle of 35.26° for 6. However, this is not a stable configuration, as the energy reaches always an absolute
minimum or maximum either for m.=0 (in plane magnetization) or m.=1 (vertical magnetization). The
transition between the two states is reached for an aspect ratio © = 0.9065, showing that for a flat disk shape
(t< R) the in-plane magnetization is favorable, while for a rod shape (> R) the vertical magnetization is
favorable. The energy E’ is shown as a function of the aspect ratio t and the azimuthal angle 6 in Fig. 5.

m
Along the straight horizontal and vertical straight lines we have E), = &.

6. The magnetometric demagnetization tensor for a finite cylinder

Combining Egs. (8) and (57) we have for the magnetometric demagnetization tensor

_2R? S 2(k L Rysin’(dk-),
v K2 k2K, + k2)

(N>;= kik;. (70)

Solving for the angular integrals one can show that only the diagonal elements of the volume averaged
tensor can be non-zero:

(N k3 :
2R? [*dk o sin?(dk,
W | =20 [P e [ ak s CE 1)
AN N I ST =)
(N33 2 kZ

The integrals over k. can be solved by means of equations [3.826.1] and [3.824.1] in Ref. [10]. Using

[°e) 2
/ dk | Sk R) 1 g

ki 2
J¥kiR 4

/ dic, L k. B _ 4 (72)

K%
we can rewrite the diagonal elements of the volume averaged tensor as:
1
2 1 ! 4 *© JHK)
N = ] o 1 o Kl— —21K

=15 - e e 73)

0

where we have introduced dimensionless coordinates. The integral over K is again of the Lipschitz—Hankel
type [12] and we find for the magnetometric demagnetization tensor of the uniformly magnetized finite
cylinder:

—_—

(NY; = 1 4 i\/1 + 2(* K (k) + (1 — ) E(k)) + 1|, (74)
27 3n 3=n

-2

S = =
I
|

with

K> = : (75)
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Fig. 6. Volumetric demagnetization factors for the finite cylinder as a function of the aspect ratio t (logarithmic scale). The factors are
equal to 1 when 7 = 0.9065.

The limiting cases are easily derived from this expression: for 71— oo, the second part of Eq. (74) vanishes,
so that the magnetometric demagnetization factors are equal to (%, %, 0). For 7—0 the term between square
brackets in Eq. (74) approaches 7, so that the demagnetization factors are (0,0, 1). These cases correspond
to the infinite cylinder and the infinite plane, respectively. Eq. (74) is in agreement with the results of Joseph
et al. [15]; the magnetometric demagnetization factors for the finite cylinder are shown graphically in Fig. 6.

7. Applications

The formalism developed for the uniformly magnetized cylinder can be applied to study the magnetic
field of a solenoid. In fact, a uniform magnetization over a cylindrical magnet is equivalent to a current
flowing on the surface of the cylinder. We will now show how to extract some useful information which is
not easily accessible by means of the standard real-space approach.

From Eq. (2) we have that the z component of the H-field can be written explicitly as

MR [ k.dk dk. ,
H.(r,z) = ; / 1 (kR krsin(dic)e ke (76)

As a first easy result, we calculate the field at the center of the solenoid. For r = 0 and z = 0, after the
integration in k., we obtain

H.(0,0) = — M, / dKJ (K)e X, (77)

which, considering that within the solenoid the M-field is also present, results in
B.(0,0) = By————.
V1412

Note that, in the limit T — oo, the field is By, which is the field of an infinite solenoid. On the other hand, for
t—0, the field goes to zero, consistent with the results shown for the volume averaged demagnetizing
tensor. For 7 = 1 we have By/2.

(78)



S. Tandon et al. | Journal of Magnetism and Magnetic Materials 271 (2004) 9-26 25

With a very similar argument, we may calculate the field along the solenoid axis, obtaining an analytical
expression, which we will not report here. Instead, we give the expression for the field at the upper surface
of the solenoid, which is

B.(0,d) = By———
JiTas
which is 0 for t = 0 and By/2 for 1— 0.
It is also interesting to evaluate the external field of the solenoid. In fact, in order to evaluate to what
extent we can consider a solenoid as ““ideal”, it is necessary to have information about the field just outside
the lateral surface. We can evaluate directly from Eq. (76) the field at r = Rand z =0

(79

H.(R,0) = — M, / dKJ(K)Jo(K)e ™K

2 [ 4
=l (3) o

where K(x) is the K-elliptic function [10]. The field goes from —M;/2 for T—0, to zero for an infinite
solenoid. Depending on the degree of ideality we desire for our solenoid, we can exploit the previous result
to determine an acceptable aspect ratio. For instance, taking the value t = 20, we have an external field just
outside the surface of the order of 0.1% of My, which can be considered in a good approximation as ideal.

Another simple calculation is the current loop. Taking the limit for d — 0 in Eq. (76), we can calculate the
field along the z-axis from

MyRd [ k*dkdk, k.
HA0,2) = - /H+@mmx3 (81)
which, after the integration in k. yields
H.(0,7) :M;R’ / ked i, (k Rye ¥
. M0R2l 1

. 82
2 (24 R ®2
Considering the relationship between magnetic moment and current in a loop u = MoV = I4, where A is
the area of the loops, we can write MyAt = IA or Myt = I, thus obtaining the Biot—Savart law

_tl R
B.(0,2) = SN (83)
As a final remark, it can be interesting to verify that, independent of the aspect ratio of the cylinder, the
total flux of the H-field over the z = 0 plane is always equal (with opposite sign) to the flux enclosed in the
solenoid. Writing Eq. (21) in cartesian coordinates, we obtain for z = 0:

¢H=/mwmm%@

MyR [ k.d’k . ik, vk,
=57 kLszl(kLR)sm(dkz)/dxdye el (84)
which, considering the definition of the Dirac-6 distribution, and the limit Jy(k, R)/k, = R/2 for k, —0,
can be evaluated easily as

by = —MyR? / dkkzsin(dkz) = —MynR?, (85)

which is exactly the solenoid magnetization multiplied by its cross section, as expected.
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8. Conclusions

We have shown that the Fourier space shape amplitude formalism can be applied to the computation of
the demagnetization tensor field of uniformly magnetized particles of arbitrary shape, and as an example we
have derived the complete DTF for the cylinder with arbitrary aspect ratio. In addition, the magnetostatic
energy and the volumetric demagnetization factors were derived in closed form. We have applied the
formalism also to the computation of the magnetic field at various special points around a solenoid. An
overview of numerical procedures which can be used to compute the DTF for more complex shapes will be
presented in Part II of this paper [3].
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